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The vibrations of a coupled pair of isotropic silver spheres are investigated and compared with the vibrations
of the single isolated spheres. Situations of both strong coupling and also weak coupling are investigated using
continuum elasticity and perturbation theory. The numerical calculation of the eigenmodes of such dimers is
augmented with a symmetry analysis. This checks the convergence and applicability of the numerical method
and shows how the eigenmodes of the dimer are constructed from those of the isolated spheres. The frequen-
cies of the lowest frequency vibrations of such dimers are shown to be very sensitive to the strength of the
coupling between the spheres. Some of these modes can be detected by inelastic light scattering and time-
resolved optical measurements which provides a convenient way to study the nature of the mechanical cou-
pling in dimers of micro and nanoparticles.
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I. INTRODUCTION

The ensemble or acoustic vibrations of micro and nano-
particles have been studied during the last few decades using
a variety of spectroscopic and time-resolved optical tech-
niques. These vibrations can be used for the characterization
of the size and shape of the particles. Their coupling with the
electrons are known to contribute to the excitonic dephasing1

and even to have a universal role in the optical emission of
quantum dots.2 Recently some experimental measurements
have focused on the acoustic modes of a pair of mechanically
coupled metallic nanoparticles �NP� �Refs. 3 and 4� or silica
microspheres.5 Measurements also exist for other systems
where the mechanical coupling is more complex such as
nanocolumns made of overlapping spheres,6 self-assembled
systems for which the coherent vibrations of the lattice of
spherical NPs have been evoked7,8 and nanopowders where
individual NPs are in contact.9–11 The goal of the present
theoretical study of the vibrations of dimers of NPs is to
improve the understanding of experimental results concern-
ing dumbbell NPs and also to pave the way to studies of a
variety of other more complex systems where individual NPs
are close enough so that their vibrations can be coupled.

A free homogeneous isotropic sphere has vibrational
modes which we denote using our notation from a previous
work.12 Briefly, these modes are classified according to four
integer quantum numbers. The first is the distinction between
torsional �T, zero divergence� and spheroidal �S, nonzero di-
vergence� modes. Modes are next labeled by the usual non-
negative integer angular momentum �. There is also an an-
gular momentum z-component m. Finally, modes are indexed
by integer n in order of increasing frequency, starting with 1.
We thus denote an arbitrary normal mode of a sphere either
as T�,m

n or S�,m
n .

For a silver nanosphere whose diameter is small com-
pared to the wavelength of light, S0 and S2 are the only
Raman active vibrations and S0 are the only vibrations ob-
served by time-resolved pump-probe experiments. Since the
fundamental vibrations are the main features in both kind of

experiments, this paper will mainly focus on the case of sym-
metric vibrations originating from the fundamental S0,0 and
S2,0.

II. METHOD

A. Continuum eigenvibrations and symmetry

Hathorn et al.13 used a molecular dynamics model to in-
vestigate the vibrations of polymer nanoparticle dimers. In
the present work, we use a continuum elastic model which
has been shown to be suitable for microspheres down to
rather small nanospheres.14 Moreover, it enables a straight-
forward way to identify the symmetry of the eigenvibrations
�irreducible representations� and to compare with the vibra-
tions of free spheres. We use the tools recently presented
elsewhere12 which are suitable to calculate the eigenvibra-
tions of arbitrary systems and to classify them in terms of
symmetry, volume variation and projections. The volume in-
tegrations required in the calculation of the eigenmodes ac-
cording to the method introduced by Visscher et al.15 were
computed numerically by integration only along the z direc-
tion by taking advantage of the axial symmetry. The wave
functions were expanded in a xiyjzk basis with i+ j+k�N.
We used N=20 in this work unless stated otherwise.

The main focus of this work is the case of dimers consist-
ing of weakly coupled spheres. The eigenmodes of any sys-
tem satisfy two basic rules: they belong to an irreducible
representation of the point group of interest and all the points
of the system must oscillate at the same frequency for a
given eigenmode. These two rules let us predict the nature of
the eigenmodes in the weak coupling regime.

The point group associated with a dimer NP is D�h if it is
made of two identical spheres and C�v if the spheres are
different. The irreducible representations are A1, A2, E1, E2,
E3 , . . . for C�v and the same with parity �u and g� for D�h.
The degeneracy with m for systems having spherical symme-
try is partially lifted for axisymmetric systems according to
the following rule: S�,0

n modes turn into A1, T�,0
n modes turn
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into A2 and S�,m�0
n and T�,m�0

n modes turn into E�m�. These
rules are obtained by checking the character table of C�v and
remembering the eim� dependence of the displacements.

The three rigid translations and three rigid rotations of the
individual spheres can be considered to be vibrational modes
with zero frequency. Conventionally, they are not included
when enumerating modes. For our purposes here, it is very
helpful to include them. We label them as S1,m

0 and T1,m
0 ,

respectively. This is an exception to our convention that
modes are indexed with n starting from 1. They transform
using the rules given before for an axisymmetric system.

B. Perturbation theory

1. Basic equations

Consider two elastic objects, where the normal modes of
vibration are known for each of them individually. In this
section, we show how a linear perturbation expansion can be
used to find the frequency shift of modes when two such
objects are weakly coupled. There are several specific situa-
tions we have in mind. The first is where the two objects are
two nanoparticles which are weakly coupled together. The
second is where a nanoparticle is weakly coupled to a sub-
strate. However, this same formalism could be applied to a
system of three or more objects. For clarity, we will always
refer to a system of two objects below, even though other
numbers of objects are possible.

The total number of atoms in the system of two objects is
N. The index i labels the atoms from 1 to N. The Cartesian
axes are labeled with Greek indices � or �, going from 1 to
3. ui� is the displacement of atom i along the � axis. mi is the
mass of atom i.

Without coupling between the objects, the net force on
atom i along axis � is

�
j�

Bi�j�uj�, �1�

where the dynamical matrix of the uncoupled system is Bi�j�.
When the two objects are coupled, the dynamical matrix
changes to Ai�j�, where �Ci�j� is the dynamical matrix due
to the coupling alone and � is a scalar parameter that we can
use for a perturbative expansion.

Ai�j� = Bi�j� + �Ci�j�. �2�

Consider a normal mode of the uncoupled system. It has
frequency �o and atomic displacements uoi�. The dynamical
equation is

�
j�

Bi�j�uoj� = − �o
2miuoi�. �3�

When � is made nonzero, the mode will continuously
shift to new atomic displacements ui� and new frequency �.
The new dynamical equation is

�
j�

Ai�j�uj� = − �2miui�. �4�

We expand the square of the mode frequency as a power
series in � as follows:

�2 = �o
2 + ��1

2 + �2�2
2 + ¯ �5�

and likewise expand the mode displacements in �,

ui� = uoi� + �u1i� + �2u2i� + . . . �6�

We keep the mode displacements normalized as follows:

�
i�

miuoi�uoi� = �
i�

miui�ui�. �7�

To determine the effect of the coupling term, we substi-
tute the expansions in � into Eq. �4�. Collecting all terms
linear in �, we obtain

�
j�

Ci�j�uoj� + �
j�

Bi�j�u1j� = − mi��1
2uoi� + �0

2u1i�� . �8�

Equation �8� is now multiplied through by uoi� and each
term is summed over i and �. In addition, substitution of the
expansions in � into Eq. �7� and collecting linear terms in �
tells us that

�
i�

miuoi�u1i� = 0. �9�

Consequently, we obtain an expression for the mode fre-
quency to linear order in � and set � to one.

�2 � �o
2 −

�
i�j�

Ci�j�uoi�uoj�

�
i�

miuoi�
2

. �10�

2. Two-point coupling

We now specialize to the case where the two objects are
coupled in the simplest possible way. We want to connect
them by a “spring.” What we mean by “spring” will be ex-
plained below. In order for the coupling to be weak, we
restrict its influence to a very small volume fraction of both
objects as in Ref. 4. We idealize this situation to the case of
a coupling involving just a single atom on each object. Atom
a on the first object is coupled through the spring to atom b
on the second object. Such an arrangement is only capable of
coupling the component of the force which is parallel to the
axis of the spring. We will suppose that the spring is aligned
along the z-axis. Thus, atoms a and b share the same x and y
coordinates.

In this situation, there are only four nonzero elements of
the coupling matrix: Ca3a3, Ca3b3, Cb3a3, and Cb3b3. Let Fa3
denote the z component of the force on atom a from the
spring. Then

Fa3 = Ca3a3ua3 + Ca3b3ub3 �11�

and

Fb3 = Cb3a3ua3 + Cb3b3ub3. �12�
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The first order perturbation formula for the frequency now
becomes

�2 � �o
2 −

uoa3
2 Ca3a3 + uob3

2 Cb3b3 + 2uoa3uob3Ca3b3

�
i�

miuoi�
2

.

�13�

3. Thin cylinder

We now consider the case of a “spring” consisting of a
thin cylinder. If the material has Young’s modulus Y then the
spring constant of this spring is ksp=YA /L where A is the
cross sectional area of the cylinder and L is the length. How-
ever, this needs to be modified if the frequency of the system
is not low compared to the internal vibrational modes of the
thin cylinder because the cylinder does not behave as an
ideal massless spring in that case. In this section, we analyze
the situation when the frequency is not necessarily low.

Atom a is located at the top end of the cylinder, at z
=L /2. Atom b is located at z=−L /2. uz�z , t� is the displace-
ment field inside the cylinder. It has the general form

uz�z,t� = Bei�kz−�t� + Dei�−kz−�t�, �14�

where B and D are constants, k=� /v and v=�Y /� is the
speed of longitudinal vibrations in a thin rod, 2872 m/s in
silver.

ezz�z , t� is the strain in the cylinder, given by ezz=�uz /�z.
The stress is 	zz�z , t�, given by 	zz=Yezz.

Fa3e−i�t = − A	zz�L/2,t� , �15�

Fb3e−i�t = A	zz�− L/2,t� , �16�

ua3e−i�t = uz�L/2,t� , �17�

ub3e−i�t = uz�− L/2,t� . �18�

For simplicity, we restrict the remainder of our discussion
to the case where ua3=−ub3 and Fa3=−Fb3 which is valid for
the symmetric modes we are mainly interested in. Note that
Ca3a3−Ca3b3=Fa3 /ua3. Furthermore, B+D=0 and

ua3 = B�eikL/2 − e−ikL/2� , �19�

Fa3 = − ikYAB�eikL/2 + e−ikL/2� , �20�

Ca3a3 − Ca3b3 =
− ikYA�eikL/2 + e−ikL/2�

eikL/2 − e−ikL/2 , �21�

Ca3a3 − Ca3b3 = − kYA/tan�kL/2� . �22�

The first order perturbation formula is

�2 � �o
2 +

2uoa3
2 kYA

�
i�

miuoi�
2 tan�kL/2�

. �23�

Finally, we take the continuum limit and apply this to the
case where the two objects are two identical homogeneous
spheres. Each sphere has mass Msph and volume Vsph. In this
case,

�2 � �o
2 +

pkYA

Msph tan�kL/2�
, �24�

where we define p as

p =
�uz�r�a��2Vsph

	
sph

u� · u�dV

�25�

Here are some values of p for the north pole of an isotro-
pic silver sphere. For the zero frequency translation mode
along z, p=1. For the spheroidal mode with m=0 and �
equal to 0, 2, 3, and 4, p equals 0.87, 3.26, 6.07, and 9.18
respectively for the silver spheres considered in this work.

III. RESULTS AND DISCUSSION

A. Symmetrical dimer

We consider a dimer made of slightly overlapping identi-
cal spheres of radius R=5 nm whose centers are on the z
axis at z=d /2 and z=−d /2. The perturbation approach pre-
sented before does not deal with such a coupling between
nanoparticles but its simplicity makes it a better starting
point to understand how the vibrations of a dimer are built.
In all this work, we chose to work only with an isotropic
approximation for silver �mass density: 10.5 g /cm3, sound
speeds: 3747 m/s �longitudinal� and 1740 m/s �transverse��.
Such an approximation is known to be adequate in most
cases and in particular in the case of multiply twinned par-
ticles. Therefore elastic anisotropy which has been shown
only recently to play a significant role for monodomain gold
nanoparticles16 and never for silver ones will be ignored
here. Table I gives the frequencies and irreducible represen-
tations of the lowest oscillations of a single sphere. Table II
gives the assignments for the lowest frequency modes of a
dimer made of the same spheres having their center being 9
nm apart �d
2R�.

In the weak coupling regime, the eigenmodes of a dimer
can be seen as the superposition of one eigenmode for each
sphere. Weak coupling means that the vibration of each
sphere is almost unaffected by the presence of the other. For
a symmetrical dimer, due to the inversion symmetry, the
eigenmodes of the dimer have to be either even or odd which

TABLE I. Frequencies of the lowest frequency modes of an isotropic silver sphere having a radius of 5 nm calculated using the model
by Lamb.

� �GHz� 138.5 146.9 202.2 214.0 219.4 281.7 282.2 286.4 319.2 335.1 340.1 347.1 375.8 395.2 396.5

i. r. T2
1 S2

1 S1
1 T3

1 S3
1 S4

1 T4
1 S2

2 T1
1 S0

1 S5
1 T5

1 S3
2 T2

2 S6
1
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means that the vibrations of both spheres have to be identical
and either in-phase �identical displacements after translating
one sphere over the other� or out-of-phase �opposite dis-
placements�.

As a first example, we focus on the quadrupolar mode S2,0
1

�A1g for D�h�. Two eigenmodes of the dimer are obtained
from this mode: one having the A1g symmetry for which the
spheres oscillate in-phase �i=32 in Table II� and an A1u�i
=24� one for out-of-phase oscillations. These modes are il-
lustrated in Fig. 1. Due to the coupling, the oscillation is
shifted in frequency with respect to that of the free spheres.
If the vibrations of the two spheres result in different dis-
placements for the center of the dimer, then the frequency
will be increased. Conversely, if the two displacements are
identical, then there will be almost no frequency shift be-
cause the displacement of each sphere is unaffected by the
other one. By decreasing the coupling between the two
spheres �i.e., increasing the distance between their centers�
the frequency difference between the two modes of the dimer
discussed above is reduced as they both evolve toward the

frequency of the S2,0
1 mode of the free spheres. It should be

noted that close to d=2R, the various frequencies do not
reach those for a free sphere. This can be attributed to the
singular nature of this point together with the limitation of
this continuum elasticity model which is unrealistic for very
small overlapping volumes.

Because the parity of the spheroidal vibrations is the same
as the parity of �, the construction of the odd and even vi-
brations of the dimer is different for odd � as illustrated in
Fig. 1 for �=3 but the resulting even vibration of the dimer
is always the one having different displacements for the two
spheres at the center of the dimer and therefore the one hav-
ing a larger frequency shift compared to the frequency of the
free spheres.

The translation along z for a single sphere corresponds to
a vibration at zero frequency. From this mode, we can con-
struct an in-phase oscillation of the dimer which corresponds
to the translation along z of the dimer �0 GHz�. The out-of-
phase oscillation corresponds to the lowest A1g mode �67.4
GHz�. To confirm this assignment we checked that the fre-
quency of this A1g mode tends to zero as the coupling be-
tween the spheres decreases. In order to have a finer control
the magnitude of this coupling, we considered a dumbbell
made of spheres connected by a cylinder whose radius is r
=R /10. This small dimension ensures that the eigenfrequen-
cies of the free cylinder are large which restricts the number
of vibrations of the cylinder which can manifest in the low
frequency range. Figure 2 shows the variation of the fre-
quency of the lowest frequency A1g mode as a function of the
length of the cylinder L. Since the spheres are hardly de-
formed but rather translated during the oscillation, it is pos-
sible to model this oscillation as that of two point masses
connected by a spring. While a first order perturbation theory
for a massless spring is possible, we present here only a basic
derivation valid for this particular vibration. The force con-
stant of the massless equivalent spring equivalent to the cyl-
inder is ksp=Y A

L where Y is the Young’s modulus and the
cross sectional area of the cylinder is A=�r2. This expres-
sion is valid only for L
r. The resulting frequency for the
dimer is then �=�2ksp /M. The very good agreement ob-
served in Fig. 2 for L�4 nm is an indication of both the
validity of the assignment of this mode and the accuracy of
the computation of the vibration eigenmodes even for such a

TABLE II. Modes of a symmetric dimer made of two overlap-
ping isotropic silver spheres whose radius is 5 nm where the dis-
tance between the sphere centers is 9 nm. In-phase and out-of-phase
oscillations of the spheres are labeled with � and � , respectively.
The last column shows the decrease of the calculated frequencies
when increasing N from 18 to 20 so as to illustrate the numerical
convergence.

i
�

�GHz� i.r. Decomposition
��
�%�

7 32.9 A2u T1,0
0

� T1,0
0 2.1

8–9 37.8 E1u T1,�1
0

� T1,�1
0 2.2

10 67.4 A1g S1,0
0

� S1,0
0 1.0

11–12 78.1 E1g T1,�1
0

� T1,�1
0 0.8

13 138.9 A2g T2,0
1

� T2,0
1 0.0

14–15 140.3 E2g T2,�2
1

� T2,�2
1 0.2

16–17 143.6 E1u T2,�1
1

� T2,�1
1 0.1

18–19 144.2 E2u T2,�2
1

� T2,�2
1 0.1

20–21 145.2 E1g S2,�1
1

� S2,�1
1 0.0

22–23 147.3 E2g S2,�2
1

� S2,�2
1 0.0

24 148.6 A1u S2,0
1

� S2,0
1 0.0

25–26 149.8 E2u S2,�2
1

� S2,�2
1 0.1

27 154.0 A2u T2,0
1

� T2,0
1 0.3

28–29 156.8 E1u S2,�1
1

� S2,�1
1 0.2

30–31 168.9 E1g T2,�1
1

� T2,�1
1 0.1

32 181.5 A1g S2,0
1

� S2,0
1 0.2

. . . . . . . . . . . . . . .

112 314.5 A1g S4,0
1

� S4,0
1 0.1

. . . . . . . . . . . . . . .

119 336.7 A1u S0,0
1

� S0,0
1 0.0

. . . . . . . . . . . . . . .

134 343.8 A1g S0,0
1

� S0,0
1 0.1

. . . . . . . . . . . . . . .

141 347.5 A1u S5,0
1

� S5,0
1 0.0

ν

S1
2,0

A1g

A1u

ν

S1
3,0

A1g

A1u

(b)(a)

FIG. 1. �Color online� Odd and even vibrations of the dimer
constructed from S�,0

1 modes of the free spheres with �=2 �a� and
�=3 �b�. The z axis goes through the centers of both spheres and the
three-dimensional �3D� displacements are obtained by rotation
around this axis.
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challenging geometry. This particular oscillation is of interest
since it was recently experimentally observed.4 The present
work demonstrates that measuring its frequency is equivalent
to determining the force constant of the “spring” which con-
nects the two NPs constituting the dimer.

Table II presents a set of low-frequency modes i=1–12
originating from the translations �S1,m

0 � and rotations �T1,m
0 � of

the spheres. Modes i=1–6 �not shown� correspond to the
rotations and translations of the dimer with zero frequency.
These 12 eigenmodes correspond to the number of rotations
and translations of the two spheres. Then modes i=13–32
correspond to combinations of the S2,m

1 or T2,m
1 and so on.

Again, these 20 eigenmodes correspond to the number of
S2,m

1 and T2,m
1 eigenmodes of the two spheres. Modes corre-

sponding to the superpositions of the breathing modes �S0,0
1 �

are also shown. However, since the vibrational density of
states increases with frequency, even in this relatively low
coupling case this mode mixes significantly with �S5,0

1 �. This
mixing is not apparent in Table II since only the main con-
tributions are shown. The same rule regarding the shift of the
frequencies as discussed for the modes originating from S2,0

1

before applies for every modes.
The way the vibrations of a dimer are built is the analog

of the way molecular orbitals are built using the linear com-
bination of atomic orbitals �LCAO� method. Such an analogy
has already been pointed out before in the case of acoustic
waves in periodic ensemble of spheres in a host material.17

For example, the A1u and A1g modes built from the breathing
mode of the spheres �S0,0

1 � are analogous to the bonding and
antibonding molecular orbital of H2 built from the 1s orbit-
als. However the reduction in the energy of the bonding or-
bital compared to that of the 1s atomic orbital does not exist
for the A1u vibration since there is no acoustic equivalence
for the screening of the charges of the nuclei due to the
electrons.

In order to study the influence of the coupling of the vi-
brations of the two spheres, the variation of the frequencies

of the different vibrations are plotted in Fig. 3 as a function
of the distance between the center of the spheres. For d=0
the system consists of a single sphere and the frequencies
match those reported in Table I. For d very close to 2R, the
behavior is singular because for d=2R the two spheres touch
at a single point. Moreover, for d=2R−� each sphere feels
the other sphere as a mass attached to it but it is no longer
the case for d=2R+�. So despite the convergence being
good, the interpretation of the results is not obvious at this
point since we can expect a nonsmooth variation of the fre-
quencies at d=2R. Figure 3 presents the branches corre-
sponding to the situation when d
2R. The lines between the
calculated frequencies connect eigenmodes having the same
irreducible representation. This was also done in a previous
work.12 The mixings between the branches having the same
irreducible representations are numerous and show that the
nature of the vibrations in the case of a strong coupling can
be quite complex.

B. Convergence of the numerical method

The numerical method used in this work has been shown
to be very accurate for several different geometries. The
question of its reliability for the challenging systems in this
work is addressed here. To that end, we performed the same
calculations with N=18 �Table II� and N=16 and N=21
�Figs. 2 and 4� to compare with the reference N=20. This
comparison does not rely on the mode index i but rather on
the irreducible representation. For example, �� for mode i
=10 in Table II is the frequency variation for the lowest
frequency A1g mode with N=20 and N=18. We varied N by
steps of 2 because adding or removing one to N does not
change the frequencies of all the eigenmodes. This is due to
the inversion symmetry. Changing N by one adds or removes
even or odd functions only depending on the parity of N.
Therefore only the convergence of even or odd modes is
changed.

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10

ν(
G

H
z)

L (nm)

FIG. 2. Frequency of the lowest A1g mode calculated for two
silver spheres of radii R=5 nm connected with a cylinder of radius
r=R /10=0.5 nm and length L �N=20 full circles, N=18 crosses,
N=16 stars and N=21 full squares� compared to the frequency of
two point masses connected with a spring having a force constant
equal to that of the cylinder �line� using Eq. �24�.

0

100

200

300

400

0 0.5 1 1.5 2

ν
(G

H
z)

d/R

2

0

3

4

5

6

FIG. 3. �Color online� Variation of the frequencies of a dumb-
bell made of two silver spheres with radii R=5 nm with varying
distance d between their centers. The A1g and A1u branches are
plotted with circles �blue online� and triangles �red online� respec-
tively. The frequencies of some S�

1 modes are marked with arrows
and labeled with �.
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The convergence for the results presented in Table II is
good. This is due to the use of a rather high value for N. The
largest variations �� are obtained for the lowest frequency
modes. This tendency is confirmed by Figs. 2, 4, and 5 ex-
cept for large values of L for which the convergence for the
lowest A1g modes is much better. The worst convergence is
for L=2 nm for which the variation between N=20 and N
=21 in Fig. 5 is still quite large �9%�. This can be understood
when comparing the calculated displacements along the z
axis with that expected from the ideal spring model for

which both spheres are translated in opposite directions and
the displacement varies linearly inside the spring �see Fig. 5�.
The steep variation of this displacement inside the cylinder
together with the flat variation inside the spheres are much
more difficult to reproduce with power functions of z when
the length of the spring �L� is small. Moreover, for L
=2 nm, L /r=4 so the behavior of the cylinder may differ
from the spring approximation. The variation of the displace-
ment for overlapping spheres is not so steep which explains
why the convergence is much better in that case. Indeed, the
spring approximation does not hold as can be checked from
the displacement plotted in Fig. 5 �top�. The deformation of
each sphere is quite significant or in other words the cou-
pling is not so weak. Similar comments apply for the other
modes which are combinations of rotations and translations
of the spheres with a nonzero frequency except that the rel-
evant characteristic value of the cylinder is not related to its
stretching but rather to torsion and bending. For the other
modes at higher frequency, the displacements inside the
spheres are not constant which can be easier to reproduce
with power functions of x, y, and z. Therefore, the conver-
gence can be better than for the eigenmodes made of the
rotations and translations of the two spheres.

The convergence for the second lowest A1g vibration was
also checked using the same method. In that case, the calcu-
lations are compared with the first order perturbation results
presented before for a thin cylinder. This is necessary be-
cause the extensional vibration of this cylinder has a fre-
quency similar to the S2

1 vibration of the spheres for L=2R
=10 nm. The comparison of both calculations in Fig. 4
shows the very high accuracy of the RUS calculations for
long enough cylinders, i.e., when the approximations made
for the perturbation theory are valid.

C. Nonsymmetrical dimer

In this general case, there are some restrictions on which
isolated sphere eigenvibrations can be combined to create a
vibration eigenmode for the dimer. First, the two spheres’
vibrations should share the same irreducible representation in
C�v �same m and same character �S or T� for m=0� other-
wise their superposition would not have a well-defined sym-
metry. Second, their frequencies should match because all
the points inside the system oscillate at the same frequency
for an eigenmode.

When going from a symmetric dimer to a nonsymmetric
one, the inversion symmetry is lost and the two spheres have
different sets of vibrational frequencies. For example it is
possible that the frequency of the S1,0

1 mode of one sphere
might happen to match the frequency of the S2,0

1 mode of the
other. In this case, some modes of the dimer as a whole
would be hybridizations of these two. However, such an ex-
act match of mode frequencies is very unlikely. Leaving
aside such coincidences, in the very weak coupling regime
the modes of the dimer are simply the superposition of one
eigenmode for one sphere with the other sphere at rest be-
cause that is the only way to have all the points of the dimer
oscillating at the same frequency. When the coupling be-
comes stronger the modes can be mixed even more than in
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FIG. 4. Frequency of the second lowest A1g mode calculated for
two silver spheres of radii R=5 nm connected with a narrow cyl-
inder of radius r=R /10=0.5 nm and length L �N=20 full circles,
N=18 crosses, N=16 stars and N=21 full squares� compared to the
first order perturbation calculation of the coupling of the S2,0

1 eigen-
modes of the spheres through the extensional eigenmode of the thin
cylinder �line� using Eq. �24�.
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FIG. 5. �Color online� Normalized displacements along the z
axis for the lowest frequency A1g mode of a dimer of overlapping
spheres with d /R=1.6 �top� and of a cylindrical-necked dumbbell
with cylinder length L equal to 2 nm �middle� and 10 nm �bottom�.
Each sphere has radius 5 nm. The continuous lines correspond to
the numerical results for N=20 while the dotted ones correspond to
a constant displacement inside each sphere �translation along z� and
a linear variation of the displacement inside the cylinder when it is
present.
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the case of the symmetric dimer since parity is lost. In that
case, any modes having the same value of m can mix pro-
vided their frequencies are close except for m=0 for which
torsional and spheroidal modes cannot mix.

IV. CONCLUSION

We have demonstrated that an exhaustive description of
the vibrations of a weakly coupled dimer based on con-
tinuum calculations, perturbation theory, and symmetry con-
siderations is possible. While the strong coupling regime can

be investigated using these numerical tools, it is of course
quite hard to interpret the results since the free oscillations of
the spheres constituting the dimer are strongly modified. The
convergence of the calculations is discussed in the weak cou-
pling regime thanks to the comparison with perturbation cal-
culations and accurate results are obtained in most cases.
General equations were given to extend the perturbation ap-
proach to other weakly coupled systems. This work paves the
way for the understanding of the vibrations of more complex
systems of interest such as chains of overlapping spheres as
in nanocolumns6 and chains of nonspherical particles.
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